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The variational principle of Jones and Sondheimer is applied to a thin film to discuss its reflective and
transmissive properties in a constant magnetic wave at optical frequencies. First, generalized admittance
tensors are defined via the variational integral, and the reflection and transmission tensors found in terms
of these. Then the reflectivity, transmittivity, absorptivity, and Voigt effect are treated for a simple case
with By parallel to the surfaces of the film, and the effect of surface collisions on these is discussed.

1. INTRODUCTION

N a pure metal at low temperatures, collisions of
electrons in the bulk of the metal are infrequent and
the absorption of energy from electromagnetic waves at
optical frequencies due to such collisions is consequently
small. Under these conditions the absorption due to
surface collisions becomes important and even domi-
nant. Holstein! showed that this effect is considerably
greater for diffuse than for specular surface scattering
of electrons, and both he and Dingle? obtained expres-
sions for the absorptivity of a semi-infinite medium in
the absence of a magnetic field. (Recently, Fedders?
has obtained more general results for a rough surface.)
Later, Jones and Sondheimer* obtained expressions for
the absorptivity of a semi-infinite medium, with a
magnetic field parallel to the surface, for both diffuse
and specular scattering. In order to do this they used a
variational principle, in which a variational integral 7,
is made stationary with respect to small changes in the
frequency component of field E, to give the surface
admittance Y ,. Here, their method will be extended to
the case of a slab of thickness d, which will later be
taken to be small compared with other parameters
which appear. A preliminary discussion of this problem
has been published,® but for completeness some of the
results are repeated here.

Jones and Sondheimer! reformulated Maxwell’s equa-
tions for a finite medium in which linear but nonlocal
current-field and polarization-field relations obtain as
the vanishing of the first variation of I, given by

zw=f E.'X(VXE,)-dS, (1.1)
S

where E,(r)e™! is the electric field, the conjugate field
E,!is that obtained by reversing the magnetic field, and
the integral is over the surface of the medium. Their

1T. Holstein, Phys. Rev. 88, 1427 (1952).

2 R. B. Dingle, Physica 19, 311 (1953); 19, 348 (1953); 19, 729
(1953); 19, 1187 (1953).

3 P. A. Fedders, Phys. Rev. 181, 1053 (1969).

4 M. C. Jones and E. H. Sondheimer, Proc. Roy. Soc. (London)
A278, 256 (1964).

8L. E. G. Ah-Sam and M. C. Jones, Alta Frequenza 38, 20
(1969).

result is obtained by writing

1w=/ V-[E,I X (VXE,)Jdx, (1.2)
14

the integral being taken over the volume of the medium,
and then

Iw=/ (VXE,!- VXE,+iwuE,t-J,
v

—ouE.-D)dx, (1.3)

where

VX (VXE,) = —iwueJotwuoDe (1.4)

has been used. Varying (1.3),

alw=/ [VXOE. - VXEo - VXE,- VXBE,
Y —I_Zw“(BEwTJw_}_EwT'BJw)
— ?%uo(3E,-Dy+-E,t-8D.) Jdx, (1.5)

and, so long as J,, D, satisfy linear relations of the form

]w=/ L,(xx)-E,(x)dx’,
’ (1.6)

Dw=/ Lyxx')-E,(x)dx’,
|4

in which L p satisfies the generalized Onsager relation

LJ,DT(X,X’)ZLJ,DT(X,,X), (17)

/ E.'8].dx= / 8E.J., dx, (1.8)
14

v

and similarly for D,. Thus (1.5) can be written

6Iw=/ {3E, - [VX(VXE,)+iwpJo—wueDy ]
14

+JE, - [VX(VXE,N+iwpJ o —wuiDo]}dx

+ / [6E. X (VXE,)+3E,X (VXE,H]-dS. (1.9)
S
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1 SIZE AND SURFACE EFFECTS ON MAGNETO-OPTICAL- -

From (1.4) and (1.4)" the volume integral in (1.9)
vanishes, and, if the components of SE,' and SE,
tangential to the surface are zero, (1.9) gives

8I,=0. (1.10)
2. REFLECTION AND TRANSMISSION TENSORS
IN TERMS OF GENERALIZED
ADMITTANCE TENSORS

For the case where V is the region between the planes
z=0 and z=d (x, y, 2 being rectangular Cartesian
coordinates), (1.4) is slightly modified by carrying out
a partial Fourier transformation F(r) — (s,2), where
§=(54,5y), and

F(r)=(1/21r)/ﬁ(s,z)e—i(“ﬂ“w’ds. 2.1
Equations (1.10) and (1.4) now give
69,=0, 2.2)
with
9o ={Cu1(d) X[VoXEs(d) ]—C.(0) X[VoXCu(0) 1}, )
2.3

- / [VoX () VoX 6ol () + oGl () Fl2)
0 —w2,uo(§/wf(2) . @,Az)]dz )

Cu(2)=Cu(s2), C.'=Cu'(—sy3),

(2.4)
where

and

Vo= (1376/62) : VOT= (—’Ls,a/aZ) .

For the case where the field in the medium is produced
by a monochromatic plane wave incident on the surface
z=0, and with electric field ie?(@*=4'®), then s=4g, where
q¢=(¢=,94)- The boundary condition on SE, S3E' requires

884(0)=084(d) —088a1(0)=88.1(d)=0 (a=2z,9). (2.5)

Equation (2.5) indicates that g, given by (2.3), (2.4),
is a quadratic function of 8(0) and &(d). This may be
seen explicitly by defining tensors X, X', Y, Y’ by
the equations

[VoX@(O)]x=ﬁ=Z [V,585(0)+X,p85(d)], (2.6)
[VoXE0)],= "ﬂ; [Ves85(0)+X0s86(d)],  (2.7)

E[(&%x')‘l'(”c’— iY’)—<l+Q— fy)‘( i

x)]_ [l+<l+Q— iY>_ '(1+Q+ :
qz q.z
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[VoXE(d)].= —5=Z [ X' 85(0)+ Vs Es(d)], (2.8)
[VoXE(d)],= ﬁ=}: [Xap'85(0)+ Vg Es(d)].  (2.9)
Using (2.3) 9 may now be written
9= HZ_Z 8a1(@) Y ap' 85(d)+8at(d) X ag’ €6(0)
F810) X as8s(d)+8a1(0) Y os85(0) . (2.10)

Since, as is apparent from (1.6)-(1.8) and (2.4), J is
symmetric in 8" and 8, it follows that

XT=Xt, Yr'=Yt, Y7T=Y't. (211)

For the case of a semi-infinite medium &'(d), (d) — 0,
and then Y is just the surface admittance tensor; (2.10)
provides a generalization of that case in a form con-
venient for obtaining the reflection and transmission

tensors R and T defined by
r=R-i,
t=T-i,

(2.12)
(2.13)

where re?@=¢-x) and te!@1® with q'= (¢s, gy—¢-)
are, respectively, the reflected and transmitted electric
fields. Since the boundary conditions at the surfaces are

Gt ra=84(0), (2.14)
ta=E84(d), (2.15)
—i[qXi+q' X1]a=[VeX E(0) ], (2.16)
—i[gXt]e=[VoXC(d) ], (a=zx,y) (2.17)

and also
q-i=q’-r=q-t=0, (2.18)

or

q-r—qr.,=q-t+q.1,=0. (2.19)

Equations (2.6)-(2.9) together with (2.12), (2.13) give
(I+Q) - T=(/¢.)[X-(I+ R+ Y'-T] (2.20)

and
(I+Q)-(I-R)=(=i/g.)LY -1+ R)+X-T], (2.21)
where Qus=qags/q.% Solving (2.20) and (2.21) for T

and R,
>] (2.22)

R=[<£X>—I.<I+Q— fz—Y)—([_’_Q_ iy,y{&X’)T

7 -1 79 7 -1 1
x[<l+Q——Y') -(-—x')+(—x) .<1+Q+—
e qz gz qz

]} e
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Once X, X', Y, Y’ are known, (2.22) and (2.23) allow
all the properties of the reflected and transmitted waves
to be found. In the following sections it is shown how
the variational principle may be used to obtain ap-
proximate expressions for these.

3. CURRENT-FIELD RELATION FROM
BOLTZMANN EQUATION

In order to apply the variational principle, specific
forms for the nonlocal tensor L(x,x’) appearing in (1.6)
are required. In the simple case of a degenerate quasi-
free-electron gas with a constant lattice permittivity &
is considered, the current density can be found by
solving the Boltzmann equation. Jones and Sondheimer*
found a general solution to this for an arbitrarily shaped
medium and their solution gives the following results
for a film of thickness d with a constant magnetic field
By parallel to its surfaces.

The distribution function f= fo+g(k,2), where fo is
the equilibrium (Fermi) distribution function. Co-
ordinates &y, ki, and ¢ are used in k space where
8x= (#2/2m*)K2, kj, is the component of k parallel to the
magnetic field, and ¢ is the azimuthal angle about the
field direction. The cyclotron frequency eBo/m* is
denoted by wo, and a constant time of relaxation = is
assumed. For (2v/w,) sinf<d, and

wo(d—2) wo3
—14 — >cosp>1— ,
9 sinf  sinf
e 1 ét2m
g(z’d)) = — / eY (¢'—¢)
wo 621r7 —1 3
2
X@’[z-}- — sin0(cos¢—cos¢’):|-v(¢’)d¢’; 3.1)
wo
otherwise,
e ¢
g(z,qb) = — / eY('—¢)
Wo J ¢o

X(&I:z—l— 2 sino(cosqb—cosqs’):l-V(¢’)d¢>’, (3.2)

wo
where ¢, is the greatest value of Y/(<¢) satisfying
2+ (v/wo) sinf(cosp—cosy) =z, 3.3)

with 2,=0 or d. In these expressions v is the electron
velocity on the Fermi surface which is given by £2= k¢?;
kr="F cosf; y= (1+1iwr)/(wor); in deriving (3.2), diffuse
surface scattering has been assumed. Equation (3.3)
gives

o= cos™!(cosp+woz/v sind) , (3.4)
for

(29/w) sing<d and cosp<1—woz/v sind,
or for
(2v/wo) sind<d
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and
cos™I(1 —wez/v sinf) << 27

—cos [ —14wo(d—3)/v sinb];
do= —cos [ cosp—wo(d—2z)/vsinf], if ¢p<w
do=2r—cos [ cosp—wo(d—2)/vsinf], if o> (3.5)
for

(2v/wo) sinf<d and cosp> —14wo(d—2z)/v sind,

or for

(2v/wp) sind>d and 0<p<cos~'(1—wyz/v sind),
21 —cos™I[ —14wo(d—z)/v sinf ]< < 2.

It can be seen from these expressions that there are two
distinct cases: (a) d>2v/wo and (b) d<2v/wo. In case
(a) complete electron orbits are possible in the bulk of
the medium, giving rise to a solution of the form (3.1).
Although case (b) can be treated by the same methods
used here for case (a), it is even more laborious and only
the latter case will be considered here.

For d>2v/wy then, the current density is given by

em?y?

4m3hd

()= f " sinods / "n(00)e00)d8, (3.6)

¢ being given by (3.1) or (3.2) in the appropriate region
and n being a unit vector normal to v. Since (2)
appears only in a scalar product with G'(z) which is
integrated [Eq. (2.4)], there is no need to display &
explicitly; it can, however, be shown to satisfy condi-
tions corresponding to (1.7).

4. EVALUATION OF VARIATION INTEGRAL WITH
EXPONENTIALLY VARYING FIELD

Before proceeding to evaluate the variational integral
or a specific form of trial field, it may be noted that, if
the z axis is a twofold axis of symmetry (a condition
certainly satisfied for quasifree electrons), the varia-
tional integral can be simplified for the case where By is
parallel to the surfaces of the slab. In this case

gJ: ga(azx:y) ) 8;2 _85:

and consequently Gf-J=8-g—8.9.. This is valid for
arbitrary angles of incidence, and allows ¢ to be varied
by varying @. The fact that variations in G' and & are
no longer independent does not affect the validity of
(2.2) as may easily be seen from (1.9).

Considering, then, the case in which By is parallel to
the surfaces of the slab,

d
o= / ((8)+(8/)—2i(g:8.+4,8,)6:
0

- (qz2+9y2) 8.2+ (‘Zzé’y _Qy‘gr)z
+iw,uo[gz(ﬂa:+ &,9y,— 825?]

— o B[ 8.2+ 8,0— 8. ydz.  (4.1)
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For simplicity, only the case of normal incidence will
be considered here, and then the x and y axes will be
principal axes for the generalized admittance tensors
introduced in Sec. 2, and the two cases, where the
electric field is parallel to By and where it is perpen-
dicular to By, can be considered separately. These two
cases will be referred to as longitudinal and transverse,
respectively, and subscripts L and 7" will be used to
distinguish quantities where necessary.

The variational method consists of taking a trial
function for G(z) which is linear in 8(0) and 8(d), and
involves a number of parameters, say, Ay, ...,Ax. On
substitution into (4.1),  becomes quadratic in (0) and
&(d), and depends on Ay, ..., Ay. Equation (2.2) now
gives the best values of Ay, ..., Ay as the solutions to

ag
L), “.2)

ON;

These values are then replaced in (4.1) and approxima-
tions for X,X’,Y,Y’ obtained by comparing co-
efficients between the resulting expression and (2.10).
The classical (constant local conductivity) theory has
exact solutions in which the fields vary exponentially
with 2. Jones and Sondheimer? found that an exponential
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here also. However, the results thus obtained in this
section and Sec. 5 suggest that these trial functions may
not be good enough when the film thickness is of the
same order as the cyclotron diameter. This will be
discussed further in Sec. 5.

For the longitudinal case the trial function is

8:(2)=ae 72 4-Beo =2 (4.3)

where the boundary condition gives, in a self-explana-
tory notation,
Eo—e 798, Ea— 8o

o= ——— = — —

)
1 _e-Za'd 1 _e—-2vd

(4.4)

For the transverse case, 8,(2) is represented in the form
found in (4.3) and the Hall field 8.(z) by

&(z) = (X150+X2(gd)€_”’+ (X350+X4gd)e—” (d=2) | (45)

In these expressions ¢ and Xy, ..., X4 are to be varied.
For the longitudinal case immediately, and for the
transverse case on eliminating Xi, ..., X, and using
(4.2) and (4.1), gives

=20(a?4B%) (1 —e27%) —2aB0%de™?

trial function was adequate for the semi-infinite case, +el@+894(0)+2a5B(0) ], (4.6)
and it seems reasonable to use similar trial functions where c=Ne2uo/m and
AL(o)=G(0)+e*G(—0), B o)=e[H(s)+H(—0)], 4.7)
A7(6)= Lo+ ¢-2#4L(—0) ~H([N o)+ eV (o) e[ R(e)+ R(~)])
X{[N(o)+e 2N (—0) LM (0)+e 2 M (—0))*+e 2 (Q(0)+Q(—0))*]
—2¢7274 M (0)+e M (—0) JLQ(0)+Q(—0) LR(s)+R(—0)]}, “ S)
B(0)=eY P(o)+e 2P (—0)]—{e*[R(0)+ R(—0) ’—[N(0)+e2*N(—0a) ]} '
X (e~ R(o)+ R(~) (U (o)-+ ¢4 (o)) +e~24(Q(0)+Q(~2))"]
—2e[M(0)+e M (—0)J[Q(0)+Q(—0) LN (0)+e 27N (—0a)]}.
In (4.7) and (4.8) G, H, L, M, N, P, Q, and R are given by
G(o)
L(O’) iw 3 T 2T (v/wo) sinfd (1—cos¢) ¢
M(O’) N 0)_0 ; /; do C0820 Sino/; d¢ </l; dz 8_2”24/;05_1(cos¢+woz/v sin@) d¢, exp[7(¢,“¢):|
N(o
() .
Y o ]| cosé cosg’ 1 peter . s
Xexpli—azo sinf(cos¢—cos¢ ):' Sin(e —4) + Py /¢ pr—
—sing sing’
1 1
v cos¢ cos¢’ w? 1|1
Xexp[—a— sin0(2—cos¢—cos¢'):| . - , (4.9
wo sin(¢’ —¢) w,? 20 |0

—sing sing’) J 1
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H(o)
P(a) w3 rm 27 (v/wo) sinf (1—cos¢) ¢
=—- / df cos *6sinf / d¢ / dz / de’
Q(o‘) wo 4 0 0 0 cos _l(cosd:-l—woz/v sinf)
R(o)
1
v Cos¢ cosg’ ¢+2m d v Y eV =#)
Xexp[y(d'—o)] exp[—a— sind(cos¢p — cos¢’ ):I . + f d¢’ (— — —sind }
wo sin(¢p’ —¢) ¢ 2 we ermr—1
—sing sing’
1 1
v cos¢ cos¢’ w? d|1
Xexp|: —— smt‘)(cosqb—cosnﬁ')] ——— |, (4.10)
an sin(¢’ —¢) w2210
—sing sing’ 1

where w,, is the plasma frequency given by w,2= Ne?/me.

5. EVALUATION OF GENERALIZED
ADMITTANCES AT OPTICAL
FREQUENCIES

At sufficiently high frequencies the solution for o
obtained by making (4.6) stationary is such that the
exponentials in (4.9) and (4.10) can be expanded in
powers of o(v/wo) ; typically, this requires frequencies in
the infrared or higher. In carrying out such an expansion
there are two cases to be distinguished—(a) &>>7, (b)
d~r,, where 7o=19/wo. In the first case the exponentials
e¢~°? are not expanded, while in case (b) a consistent
treatment requires them to be expanded also. For case
(a) the absorption is much the same as that for the
semi-infinite case considered by Jones and Sond-
heimer* 7 but slightly modified by factors arising from
terms involving e7°¢; in particular, the zeroth-order
approximation for ¢ is just the classical value in both
cases. For case (b), however, the lowest-order terms in
the expansion of ¢ are independent of o and the next-
higher-order terms give rise to an approximation for ¢
which is not independent of &, and &,. This latter effect
is presumably due to the inadequacy of the exponential
(4.3) and (4.5) and suggests that some improvement of
the results obtained here could be obtained by use of an
improved trial function. Nevertheless, as the results
shown here are derived from the zeroth-order term and
so do not involve g, it is reasonable to suppose that even
if their exact form is incorrect their order of magnitude
is probably right, and they are used to illustrate the
method which, clearly, can be equally well applied to
improved results.

¢ M. C. Jones and E. H. Sondheimer, Phys. Rev. Letters 14,
643 (1965).

"M. C. Jones and E. H. Sondheimer, in Proceedings of the
International Colloquium on Optical Properties and Elecironic
Structure of Metals and Alloys, Paris, 1965 (North-Holland
Publishing Co., Amsterdam, 1966).

For the case d>>7q, it may first be noted that if G()
is expanded in the form

G(0)=go/20+gro+gaoro®+ - - -, (5.1)
and H(o) in the form
H(o)=hot+horotha(ore)* - - -, (5.2)
then
ho=%dgo+ g0, (5.3)

with similar relations between corresponding terms for
P, L; Q, M; R, N. Expanding the terms in the square
bracket in (4.6) in powers of o7y, and treating od as of
order (70)°, keeping terms up to order (a7y)! gives
(a*+a?) A (o)+208B(0)

=30(a®+B*)(1—e29%) —2aB0%de 4

+c[(e*+8%)(g0/20) (1 —€~27%)+ 2aBdgoe "

+ (@48 giro(1+e7274)+2a8- 2groe—4].  (5.4)
In the transverse case gy and g; are replaced by
lo—imo*/no and Iy —3mi/ (mo/no)+1ni(mo/n,)?, respec-
tively. Differentiating (5.4) gives, in the lowest order,
(5.5)

On evaluating go,lo,0,70, Eq. (5.5) is found to be just
the classical result,

at=cgo.

Netuo/ twr w?
o= < - ~> , (5.6)
m \+ior  w,?
for the longitudinal case, and
N 62;/,0[ wr 2 w?
2= — -
m Ll+ior 1492 w,?
iwT v \? twr P w?
+<— - ) /< - — —>] 5.7
14iwr 1442 1+iwr 1492 wp?
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for the transverse case. Resubstituting into (5.4) from
(5.5) gives additional nonclassical terms arising from
surface collisions. In order to calculate the effect of these
on the reflection and transmission of the slab, the
components of the (diagonal) generalized admittances
are found by comparing coefficients in (5.4) and (2.10).
Thus,

X=X'=—20¢%/(1—¢299) (5.8)
and
(5.9

Y=Y'=0(14+¢e29)/(1—e2%~4cgiro,

1 gd)*
= —[(5024-5.12)(1"{— (o)
d 45
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where X, V are either X.s, Vs or Xy, Yoy, and gy is
taken accordingly. In the limit d —« Egs. (5.8), and
(2.23) just give the result of Jones and Sondheimer.4¢
Further discussion of the effects of the additional non-
classical term in (5.9) will be left until Sec. 6.

In the case d~ro, it is no longer possible to treat od
as of order (o70)° and so terms involving ¢=¢ in (5.4)
must also be expanded as power series. Equation (4.6)

now gives

7 1
+- -)+2&)8d(—1+ G '>:|+6{(502+5d2)[;god+glro

702 703 702 2 2 7 762 rot 70° 7ot
+gs +g3~ —hy 52— +<— ZL_SgOd_*_ gﬂ’o—l- —ga + 2—’“ +g4 +g5~—— —h4——>(ad)2+ :l
288 1 d 1’02 1’03 h1’02+ ~7 d 1 7’0 +1 1’0 lhro
+ [* —go— —gs— thyr— (——" — —gr— t —g— ——
T T T e T\180™ T e T d 6
7’04 70° 7’64
+g4—; +g5— —h4;)(dd)2+' . :” , (5.10)

where again, as in (5.4), this expression is valid for the
transverse case as well as the longitudinal, provided
that go and g1, etc., are suitably redefined. Differentiat-
ing (5.10) with respect to ¢ and setting the resulting
expression equal to zero gives o—but this is found to
depend on &, and &,. This indicates that the exponential
form for the fields is inadequate when d~7,, but,
nevertheless, because the leading terms are inde-
pendent of ¢, Eq. (5.10) can be used to give approxima-
tions for X and ¥ which go beyond the classical results.
To fully assess the reliability of these requires finding

o N ® v (

. transmission

N W b o

JUd

8 7 6 5 4 3
- Iog'od

Fic. 1. The variation of classical longitudinal transmittivity
with film thickness d (measured in meters). In this figure and
Figs. 2 and 3 w=1.5w, and the other parameters have the values
given in the text.

a better trial function for the field, but this is not
attempted here. The functions g, and gy, etc., appearing
in (5.10), are of considerable length and will not be
displayed here explicitly; they can be obtained from
(4.9) and (4.10).

6. RESULTS

To illustrate the effect of size and surfaces the trans-
mittivity (| 7|?), reflectivity (|R]|?), and absorptivity
(1—|R|2—|T|?) have been computed for a model of a
degenerate semiconductor. This has been chosen so that
it is possible to satisfy wo=w, at values of the magnetic

1 j
: m
.8
7
6
65
g
=
[
3
2
X
8 7 6 5 P 3

- log,d

F1c. 2. The variation of classical longitudinal reflectivity
with film thickness d.
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, absorption .
DN 0 o0y m ©

N W

8 7 6
~log,,d

Fi1c. 3. The variation of classical longitudinal absorptivity
with film thickness d.

field which are attainable in practice. In addition to the
quantities mentioned above, the Voigt angle—the angle
between the incident direction of polarization and the
major axis of the elliptically polarized transmitted
wave—has been computed.

In the model used, N=10%m"3, m*=0.1lm, and
E=168,. Since ry=1/wor, where [ is the mean free path,
the exact classical results are obtained from (5.8) and
(5.9) by putting /=0. In order to check the validity of
the expansion used in (5.10), values for /=0 are com-
pared with the corresponding exact classical values.

80°
70°
60° 9
50°
40°
30°%
20%
10° o
o o o M it
-10° c
-20° 5
-30° d

F16. 4. The classical Voigt rotation. On the left of the figure w
is fixed (=0.1 wp) and on the right is fixed (=w;). The broken
curves are for =107 m the solid ones for d=10"5 m. In curves
(a) w=wp and in curves (b) w=0.2 wp; in curves (c) wo=0.3 wy,
and in curve (d) wo=wp.
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F16. 5. The classical (a), approximate classical (b), and non-
classical (c) absorptivity and transmittivity in both the longi-
tudinal (solid) and transverse (dashed) directions plotted against
field for w/wp=1, d=10"" m.

The figures show that there are pronounced size
effects even in the classical case (Figs. 1-3) and that
the surface effects can produce changes of the order of
109 or more (Figs. 5 and 6). The effects of a magnetic
field are also considerable and, as Fig. 4 indicates, quite
complicated behavior can result from varying, say, both
frequency and film thickness even in the classical case.
Figures 5-7 indicate that, apart from fields close to the
bulk resonance at wo/w=1, the expansion in (5.10) is
valid, though for w<kw, “close to” covers a considerably
wider range of fields than for larger values of w. An exact
physical description of the processes which give rise to
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F16. 6. The same curves as Fig. 6 for the absorptivity and
m.

reflectivity for w/wp,=0.1, d=10"7
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Fi16. 7. Variation of Voigt rotation with field for w/w,=1,
d=10"" m (upper), and w/w,=0.1 (lower). The labeling of the
curves corresponds to that of Figs. 5 and 6.

the departures from classical behavior, because of the
complicated expressions involved, offers some difficulty.
A simple method of deriving the results of Jones and
Sondheimer* has been given by D’Haennens and Carter®
but this method cannot be used to give the results ob-
tained in Sec. 5, although it throws some light on the
processes involved.

8J. P. D’Haennens and D. L. Carter, Phys. Rev. 140, A1992
(1965).
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The reflectivity and absorptivity do not—except in a
manner to be expected—differ appreciably qualitatively
from the results of Jones and Sondheimer,* but as they
considered the semi-infinite case they were unable to
consider the transmissive Voigt effect. As remarked
above, in the absence of an improved solution for the
field, the results probably only indicate the order of
magnitude of the effects and are not to be taken as
exact. The formalism introduced in Sec. 2, however, can
be useful even in the classical theory. Donovan and
Medcalf® have considered size effects in the classical
case, as have Ramey e al.'® and others, but such
treatments are not always easy to compare. Because the
results of Sec. 2 can be easily extended to a series of
parallel slabs by using the relations

Y= Y1=Xi(Y/+ Y1 X/,

X1+2= - x1(Y1,+ Y2)—1X2 )

Yi'= Y/ =X/ (Y + YY) X,,

X1+2/ =— Xz’(Yll“l- Y2)‘1X1’ y
in a self-explanatory notation, the results obtained here
can be extended to an arbitrary arrangement of such
slabs. Further effort will be directed towards the evalua-
tion of the generalized admittances for other systems,

for example, magnetic materials, and to more exact
treatment of the surface terms.
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